
 Hunter and Cheng 1

DBuilder: A Parallel Data Management Toolkit for Scientific Applications

Robert M. Hunter Jing-Ru C. Cheng
U.S. Army Engineer Research and Development Center U.S. Army Engineer Research and Development Center

 Major Shared Resource Center Major Shared Resource Center

 3909 Halls Ferry Road 3909 Halls Ferry Road

 Vicksburg, MS 39180-6199 Vicksburg, MS 39180-6199

 Ph: 601-634-377 Fax: 601-634-2324 Ph: 601-634-4052 Fax: 601-634-2324

 Robert.M.Hunter@erdc.usace.army.mil ruth.c.cheng@erdc.usace.army.mil

Presenter: Robert M. Hunter

Conference: PDPTA’05

Abstract

Code migration from serial to parallel platforms using a distributed-memory

model involves a number of changes in the serial code. The most significant change is the

implementation of a message passing interface (MPI) scheme for domain partitioning,

data coherence among processors, and data communication for spatially distinct

multicomponent applications. The DBuilder software has been developed as a toolkit for

application developers to leverage code migration efforts. This paper details the DBuilder

software design, the coordination of objects when partitioning the domain with two

existing objects, e.g., vertex and element, the synchronization algorithms, and the coupler

setup for multicomponent applications with partially overlapped distinct dimensional

domains. Furthermore, the integration of legacy parallel linear solver software is also

discussed.

Keywords: parallel algorithms, multidomain, scientific computing, application programming

interface, software tool

I. Introduction

A majority of scientific applications require a computational mesh, which is a discretization form of the

spatial domain. A variety of data can be associated with the mesh, represented by sets of vertices, edges, or

elements. These data can sit on vertices or elements of the mesh. When parallelism is employed, the key is to

partition the mesh evenly to processors, maintain data coherence among processors, and implement efficient

parallel algorithms to reduce communication overhead. DBuilder has been developed to provide a simple

Application Programming Interface (API) for users to sidestep the learning curve of message passing, graph

theory, and parallel algorithms. DBuilder is written in C and provides a FORTRAN interface. Facets of parallel

programming are implemented by utilizing tools and libraries such as ParMETIS [1] and the Message Passing

Interface (MPI). A library similar to DBuilder called libMesh [2] provides a parallel framework for data

management, yet it is built on C++ and can be difficult to utilize with legacy codes that are written in

FORTRAN. Furthermore, libMesh requires that the global mesh be stored on each processor. DBuilder does

not impose such a limitation, which allows for memory to scale as the number of processors is increased (Figure

1).

DBuilder provides support for domain partitioning, parallel data management, coupling coordination,

and parallel solver interfacing. Although DBuilder provides higher level functionality such as domain-coupling

and parallel solver interfacing, it was designed first and foremost to provide fundamental routines for users to

manage shared data between vertices and/or elements of a distributed structured or unstructured mesh.

DBuilder is not meant to be a replacement for libraries such as ZOLTAN [3] or DRAMA [4]. The main purpose

of these libraries is for workload balancing and adaptive mesh refinement. However, DBuilder can complement

such libraries. For example, DRAMA requires that the application provide information on the current

distributed mesh and on calculation and communication requirements. DBuilder encapsulates this information

for the users, so they need not create new data structures to interface with DRAMA.

 Hunter and Cheng 2

Memory Usage of Upatoi_base

0

1000

2000

3000

4000

5000

6000

1 4 8 16 32 64 128

Number of Processors
M
B

 0

High Water Memory Ideal

Figure 1. Memory scaling comparison between ideal and actual

II. DBuilder Framework

A mesh can be viewed as a graph G=(V,E), which is a set of vertices (V) and edges (E). When a

subgraph on each processor is given to DBuilder, DBuilder partitions the domain (G) to processors. This

partition may be manipulated to provide a distribution that is low in communication or a computationally

balanced workload. DBuilder can build a vertex domain with a distributed number of vertices, an element

domain with a distributed number of elements, or a boundary element domain comprised of boundary elements

in the element domain. A vertex domain is favored when the application is to solve vertex-based values such as

the finite difference method, while an element domain (or the vertex domain of the dual graph of G) is for

solving cell-centered values such as the finite volume method. For a finite element application, coordination

between elements and vertices is required because the assembly procedure assembles each elemental matrix to a

linear system, and the linear system is then solved for vertex-based values. DBuilder also provides a default

rule for such coordination between vertices and elements. A callback approach is supported for users to specify

their own rules.

Data migration among processors is encapsulated in DBuilder using MPI data types. DBuilder has the

information for local and ghost vertices/elements alive throughout the entire application. This piece of

information is mandatory for gather/scatter operations in the parallel paradigm. Two API functions are

facilitated for the user to maintain coherent data structures among processors. MPI nonblocking functions are

called in DBuilder for data synchronization.

Figure 2 shows a section of code implemented in WASH123D [5] to illustrate the use of the DBuilder

API. In this case, both vertex and element domains are built for the finite element method to maintain a

balanced number of vertices among processors. The first two function calls pass geometric information to

DBuild_Init for building vertex and element domains, respectively. DBuilder registers their memory

addresses only and does not keep a copy of the geometric information. Then, the function

DBuild_Get_file_part can be called to retrieve the local count of data to be read on the processor. Two

instances of DBuild_Domains are called to build the vertex domain followed by the element domain. The

element domain’s partition rule is based on the constructed vertex domain. These two domains have their own

local entities and ghost entities, where the ghost entities are owned by other processors. Two steps are required

to update data in the element array (i.e., element indices) that is not owned locally. These are as follows: (1)

DBuild_Set_Type is called to set the data type for the element array, and (2) DBuild_Global_update

brings in the ghost values to the element array. Based on the DBuilder constructed element domain, some

vertices may need to be available as ghosts on a given processor, because more than one ghost layer may be

necessary in the algorithm. DBuild_Add_ghosts is available to achieve this purpose. DBuild_Set_Type

and DBuild_Global_update are then called to bring in the vertex coordinates for the vertex domain.

DBuild_Set_type is then called again to instantiate a DB_Type for updating the data on ghost vertices. It

should be noted that a DB_Type is not interchangeable between domains, even though the data may be of the

same primitive type. Once the domains and DB_Types are built, the rest of parallelization is basically to place

DBuild_Global_update routines at appropriate locations in the code.

 Hunter and Cheng 3

Figure 2. Code containing DBuilder APIs

III. DBuilder Coupler

Multiphysics applications on multidomains have become a large focus. Solving these applications

requires that multidomain integration be executed to integrate two or more applications. The spatial relationship

between computational domains can be adjacent, partially/fully overlapped, or distinct. DBuilder allows for the

building of a coupler object to avoid the dependency between meshes when partitioning. Figure 3 depicts the

concept of this coupler implementation. In the figure, all four processors participate in two-dimensional and

three-dimensional simulations. Because dependency is not specified between domains when partitioning, a

given processor in the 3-D domain exclusively owning a 2-D slice of the domain is not guranteed. As shown in

the figure, processor P3 owns a partition of the 2-D subdomain, which is a partition of the 3-D subdomain

owned by processor P2 and P3. Likewise, the top of the 3-D subdomain that processor P1 owns is a partial

subdomain partitioned to P0 and P1 in 2-D. A coupler formed with DBuilder will provide the message

passing from 2- to 3-D and from 3- to 2-D as shown in the red and blue dashed arrow lines, respectively.

Figure 4 shows a section of code used to build a vertex coupler associated with the vertex domain and

an element coupler associated with the element domain. The API function DBuild_Coupler_init is

called twice to create these two couplers. The function DBuild_Get_coupler_size is called for a request

of the size of a coupler. The argument DB_D2TOD1 accounts for the size of the coupler in Domain 2 (D2)

 /*** Initialization for vtxDoamin and elementDomain ***/

 ierr = DBuild_Init(num_global_vertices, num_ghost_layer,0,

point2neighbor_list,proc_set,&vtx_neighbor_list,

&vtx_neighbor_list,&vtx_coord,total_bytes_of_each_vtx,

vtxDomain);

 ierr = DBuild_Init(num_global_elements,num_ghost_layer,

num_neighbors_per_elm,

&num_entries_per_elm,proc_set,&element_array,

&elm_neighbor_list,NULL,0, elementDomain);

 /*** Read mesh from a file --- partial file is read on each processor ***/

 ierr = WashRead_geom3(fd, mesh); /** fill in coord and element arrays

 in mesh and then create neighbor list **/

 /*** Build domains ***/

 ierr = DBuild_Domains(1, NULL, vtxDomain);

 ierr = DBuild_Domains(3, vtxDomain, elementDomain);

 /*** update element_array for ghost elements ***/

 ierr = DBuild_Set_type(num_entries_per_elm*sizeof(int),&dType,

elementDomain);

 ierr = DBuild_Global_update(element_array,dType,elementDomain);

 /*** add ghost vertices based on elementDomain ***/

 ierr = DBuild_Add_ghosts(element_array,num_local_vertices,

num_neighbors_per_elm,num_entries_per_elm,vtxDomain);

 /*** bring in the coordinates for ghost vertices ***/

 ierr = DBuild_Set_type(num_dir*sizeof(double),&dType,vtxDomain);

 ierr = DBuild_Global_update(coord,dType,vtxDomain);

 /*** build data types for data gathering or scattering ***/

 ierr = DBuild_Set_type(sizeof(double),&mesh->doubleType,vtxDomain);

 Hunter and Cheng 4

when updating Domain 1(D1). From the code in Figure 4, DBuilder internally represents the 2-D domain as D1

and the 3-D domain as D2. This is determined by the ordering of the domains in the call to

DBuild_Coupler_init. The function DBuild_Coupler_update is called to maintain consistent data

on two different domains (e.g., D2 and D1) among processors. In this example, the data on D1 named

mtyp_temp, which is a source, updates the destination on D2 shown in the first argument based on the

coupler’s element domain mentioned at the last argument. According to the third argument, it is known that

each entry is composed of two integers.

Figure 3. Concept of the coupler implementation

Figure 4. Code building coupler using DBuilder

/*** initialization and creation of coupler’s vtx domain and element

 domain ***/

ierr = DBuild_Coupler_init(&mesh2->vtxDomain,&mesh3->vtxDomain,

 coupler->npxz, mesh2->vtxDomain.numberLocalElements,

 &coupler->vtx_coupler);

ierr = DBuild_Coupler_init(&mesh2->elementDomain,&mesh3->elementDomain,

coupler->mtopxz,mesh2->elementDomain.numberLocalElements,

&coupler->elm_coupler);

/*** get the size of coupler’s element domain ***/

ierr = DBuild_Get_coupler_size(&couplerSize,&coupler->elm_coupler,

DB_D2TOD1);

/*** update D1's vector to D2's vector on the element domain ***/

ierr = DBuild_Coupler_update(coupler->mtypxz, mtyp_temp, 2*sizeof(int),

DB_D1TOD2,&coupler->elm_coupler);

 Hunter and Cheng 5

IV. DBuilder and Linear Solvers

DBuilder has an interface to linear solvers such as BlockSolve95 [6] and pARMS [7]. As shown in

Figure 5, only two functions are required to use the parallel linear solver BlockSolve95. First,

DBuild_Solver_reset_co passes the matrix and associated geometric domain to DBuilder. Second,

DBuild_Solver_solve along with the right-hand side vector, initial guess, and the associated mesh domain

is passed to DBuilder to solve the linear system, with the result stored in the second argument and the residual

information at the third argument.

Using the DBuilder interface, the parallel solver can be changed from run to run though environment

variables. Figure 6 shows the speedup of WASH123D when the native solver of the code was replaced using

Blocksolve95. With minimal effort, a speedup of 1.5 to 2.5 was achieved for various processor counts.

Figure 5. Code call DBuilder API to interface BlockSolve95

Time measurement on SC45

1

1.5

2

2.5

3

1 2 4 8 16 32 64

number of processors

S
p
e
e
d
u
p

 .

Speedup w ith BlockSolve95

Figure 6. Speedup with BlockSolve95

V. Conclusion and Future Work

DBuilder provides a parallel software toolkit to implement parallelism in application codes.

Experimental results show that the overhead for building domains can be considered insignificant. However,

the time spent in communication to maintain data coherence becomes dominant as the number of processors

increases (Figure 7). This may occur if the problem size is too small for a large number of processors, or the

parallel solver is not efficient, i.e., too much communication time spent in the solver. Thus, more sophisticated

parallel solvers, such as BlockSolve95 and pARMS, are integrated into DBuilder, with future work to support

the PETSC interface. To learn more about DBuilder visit www.erdc.hpc.mil/scs/dbuilder/Dbuilder.html.

ierr = DBuild_Solver_reset_co(matrix, &mesh3->vtxDomain);

iter = DBuild_Solver_solve(rhs, x, &residual, &mesh3->vtxDomain);

 Hunter and Cheng 6

C om m u n ic a t io n v s . W a ll C lo c k T im e

U p a tio _ b a s e

0 .1

1

1 0

1 0 0

8 1 6 3 2 6 4

n um b e r o f p ro c e s s o rs
T
im

e
 (
h
rs
)

0

T o ta l W a ll T im e

C om m u n ic a t io n T im e

Id e a l W a ll T im e

Figure 7. Performance measurement on Compaq SC45

Acknowledgments

This work was supported in part by an allocation of computer time from the DoD High Performance

Computing Modernization Program at the Engineer Research and Development Center (ERDC) Major Shared

Resource Center (MSRC). The ERDC Coastal and Hydraulics Laboratory, Vicksburg, MS, also provided

support.

References

[1] Karypis, George, et al., “ParMETIS: Parallel Graph Partitioning,” http://www-

sers.cs.umn.edu/~karypis/metis/parmetis/.

[2] Kirk, Benjamin S. and Peterson J. W., “libMesh: A C++ Finite Element Library,”

http://libmesh.sourceforge.net, University of Texas at Austin.

[3] Boman, Erik, et al., “Zoltan: Data-Management Services for Parallel Applications,” http://www.cs-

sandia.gov/Zoltan/.

[4] Merten, Bart, et al., “DRAMA: A Library for Parallel Dynamic Load Balancing of Finite Element

Applications,” P. Amestoy, P. Berger. M. Daydé, I. Duff, V. Frayssé, L. Giraud and D. Ruiz, (eds),

EuroPar’99 Parallel Processing. Lecture Notes in Computer Science, No. 1685, Spinger-Verlaq,

1999, pp 1-22.

[5] Cheng, Jing-Ru C., et al., “Parallelization of the WASH123D code—Phase I: 2-Dimensional

Overland and 3-Dimensional Subsurface Flows,” to appear, the 2004 International Conference of

Computational Methods in Water Resources.

[6] Jones, Mark T. and Paul E. Plassmann, “BlockSolve95: Scalable Library Software for the Parallel

Solution of Sparse Linear Systems,” http://www-unix.mcs.anl.gov/sumaa3d/BlockSolve/.

[7] Yousef, Saad, et al., “pARMS: parallel Algebraic Recursive Multilevel Solvers,” http://www-

unix.mcs.anl.gov/sumaa3d/BlockSolve/.

